Reference Answer of Lecture 2

Generalized Gronwall Inequality

Suppose that, g(t), C(t), $h(t) \in C([t_0, T])$ with $C(t) \ge 0$ and $h(t) \ge 0$. If

$$g(t) \le C(t) + \int_{t_0}^t g(s)h(s)ds \quad t \in [t_0, T]$$

Then we have

$$g(t) \le C(t) + \int_{t_0}^t h(s) C(s) e^{\int_s^t h(\tau) d\tau} ds \quad t \in [t_0, T]$$

Proof: Let $u(t) = \int_0^t g(s)h(s)ds$ then $g(t) - C(t) \le u(t)$ $t \in [t_0, T]$

$$u'(t) = g(t)h(t) \le (u(t) + C(t))h(t) = u(t)h(t) + C(t)h(t)$$

To solve this ODE, firstly we solve a general form x'(t) = P(t)x(t) + Q(t) (*)

For ODE
$$x'(t) = P(t)x(t)$$
 we have $x(t) = ce^{\int_0^t P(s)ds}$

Then suppose $x(t) = c(t)e^{\int_{t_0}^{t} P(s)ds}$ is the general solution of ODE (*)

The first derivative of both sides:

$$x'(t) = c'(t)e^{\int_{t_0}^{t} P(s)ds} + c(t)e^{\int_{t_0}^{t} P(s)ds} P(t)$$

On the other sides

$$x'(t) = P(t)x(t) + Q(t) = P(t)c(t)e^{\int_{t_0}^{t} P(s)ds} + Q(t)$$
$$\therefore c'(t) = Q(t)e^{-\int_{t_0}^{t} P(s)ds} \Rightarrow x(t) = (c(t_0) + \int_{t_0}^{t} Q(s)e^{-\int_{t_0}^{s} P(\tau)d\tau} ds)e^{\int_{t_0}^{t} P(s)ds}$$

Here
$$P(t) = h(t)$$
, $Q(t) = C(t)h(t)$

Then
$$u(t) = (c(t_0) + \int_{t_0}^{t} C(s)h(s)e^{-\int_{t_0}^{s} h(\tau)d\tau} ds)e^{\int_{t_0}^{t} h(s)ds}$$

Because
$$u(t) = \int_{t_0}^{t} g(s)h(s)ds$$
, then $u(t_0) = 0$, while $u(t) = c(t)e^{\int_{t_0}^{t} h(s)ds} \Rightarrow c(t_0) = 0$

$$\therefore u(t) = \left(\int_{t_0}^{t} C(s)h(s)e^{-\int_{t_0}^{s}h(\tau)d\tau}ds\right) e^{\int_{t_0}^{t}h(s)ds} = \int_{t_0}^{t} C(s)h(s)e^{\int_{s}^{t}h(\tau)d\tau}ds$$

$$\therefore g(t) \le C(t) + u(t) = C(t) + \int_{t_0}^{t} h(s)C(s)e^{\int_{s}^{t} h(\tau)d\tau} ds \quad t \in [t_0, T]$$